
New Task Learning
Capabilities in Rosie

2019 Soar WorkshopMay 9, 2019

Aaron Mininger

University of Michigan

2

Interactive Task Learning

■ Design agents that can learn new tasks
from scratch through natural forms of
interaction

3

Situated Interactive Instruction

■ Situated
Instruction happens in a shared environment

■ Interactive
Both the instructor and agent engage in dialog

■ Instruction
Agent learns primarily through natural language

4

■ Key Characteristic: The agent must learn
quickly from few examples

■
■ Learning must be:

■ Efficient: Maximize learning from each instruction
■ Generalizable: Apply learning to future task variations
■ Compositional: Build on previously learned knowledge
■ Diverse: Learn a range of task and knowledge types

Instructional-ITL Learning Problem

Task Domains

5

Task Diversity

Schedule a meeting with Dave.

Make me a cup of tea.

Deliver the mail.

Find the fastest route to a
supermarket.

Lead a tour of the office.

Task Diversity

7

■ Tasks will have a variety of different
■ Characteristics
■ Objects
■ Concepts
■ Actions
■ Instructional Strategies

■

Key Research Question

8

■ How to expand the diversity of tasks an
Instructional-ITL agent can learn?

■
■ Three main dimensions of complexity:

■ Diverse Action Types
■ Diverse Task Modifiers
■ Diverse Task Formulations

Demo

Key Research Question

10

■ How to expand the diversity of tasks an
Instructional-ITL agent can learn?

■
■ Three main dimensions of complexity:

■ Diverse Action Types
■ Diverse Task Modifiers
■ Diverse Task Formulations

11

Diverse Action Types

■ Want to teach tasks with a variety of types
of actions:
■ Physical
■ Perceptual
■ Communicative
■ Memory-Based

12

Diverse Action Types

■ Perceptual

13

Diverse Action Types

■ Communicative

14

Diverse Task Formulations

■ How is the task represented?
■ What learning mechanisms are used?

15

Diverse Task Formulations

■ How is the task represented?
■ What learning mechanisms are used?

May depend on:

■ How the task is taught
■ What capabilities the agent has
■ Characteristics of the task

16

Diverse Task Formulations

■ Goal-Based

Store the fork.

If the fork is a utensil, then
the goal is that the fork is in
the drawer and the drawer is

closed.

17

Diverse Task Formulations

■ Procedural
Heat the blue mug in the

microwave.

Open the microwave.

Move the blue mug into the
microwave.

Close the microwave.

Turn on the microwave for five
seconds.

Wait until the microwave is off.

Diverse Task Modifiers

18

■ There are many ways a task can be modified:
■ Temporal: when a task should be performed
■ Conditional: whether a task should be performed
■ Repetitious: how many times a task should be

performed
■ Spatial: where a task should be performed
■ Manner: how a task should be performed

Temporal Modifiers

19

■ Start
At 3:00, open the door.
After three minutes, turn off the lights.
After the microwave is off, open the door.

■ Duration
Wait for one minute.
Turn on the microwave for five seconds.

■ End
Wait until 4:00.
Turn right until you see the door.
Press the down button until the screen is lowered.

Conditional Modifiers

20

■ Conditional Goals

■ Conditional Actions

^handle

task34
op_store^name

^task-rep
^arg1

^obj-slot

object^arg-type

Learning Conditional Goals

21

Store the fork.

slot1

^handle

task34
op_store^name

^task-rep
^arg1

^obj-slot

object^arg-type

^goal
^condition

^1

Learning Conditional Goals

22

slot1

If the fork is a utensil ..

utensil^predicate

^handle

task34
op_store^name

^task-rep
^arg1

^obj-slot

object^arg-type

^goal
^condition

^p1

^1 ^1

^2 ^predicate drawer

in
^relation

Learning Conditional Goals

23

slot1

slot2

If the fork is a utensil, then the goal is that the fork is in the drawer

utensil^predicate

^handle

task34
op_store^name

^task-rep
^arg1

^obj-slot

object^arg-type

^goal
^condition

^p1
^p2

^1 ^1

^2

^1

closed

^predicate drawer

^predicate

in
^relation

Learning Conditional Goals

24

slot1

slot2

If the fork is a utensil, then the goal is that the fork is in the drawer
and the drawer is closed.

utensil^predicate

Learning Conditional Goals

25

(<tcn> ^handle store ^task-rep <task-rep> ^goal <goal>)

 (<task-rep> ^name op_store ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <slot1>)

 (<goal> ^conditions <conds> ^p1 <p1> ^p2 <p2>)
 (<conds> ^p1 <cond-p1>)
 (<cond-p1> ^predicate utensil ^1 <slot1>)

 (<p1> ^relation in ^1 <slot1> ^2 <slot2>)
 (<p2> ^predicate closed ^2 <slot2>)
 (<slot2> ^predicate drawer)

If the fork is a utensil, then the goal is that the fork is in the drawer
and the drawer is closed.

Learning Conditional Goals

26

If the fork is a utensil, then the goal is that the fork is in the drawer
and the drawer is closed.

(state <s> ^name op_store
 ^current-task <task>
 ^world <world>
 ^task-concept-network <tcn>)

 (<task> ^name op_store
 ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <obj1>)

 (<world> ^objects <objs>)
 (<objs> ^object <obj1> <obj2> <obj3> ...)
 (<obj1> ^handle obj25 ^predicate fork gray utensil visible ...)
 (<obj2> ^handle obj48 ^predicate drawer closed not-visible ...)

Learning Conditional Goals

27

If the fork is a utensil, then the goal is that the fork is in the drawer
and the drawer is closed.

(<task> = op_store(arg1=<obj1>))
(<world> = { <obj1> <obj2> ... })
(<obj1> = { fork, gray, utensil, visible ... })
(<obj2> = { drawer, closed, not-visible, ... })

Learning Conditional Goals

28

state op_store: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Learning Conditional Goals

29

state op_store: ^current-task <task> ^world <world> ^task-concept-network <tcn>

state-no-change: chunking = true

State No Change (No desired wme)

Learning Conditional Goals

30

state op_store: ^current-task <task> ^world <world> ^task-concept-network <tcn>

state-no-change: chunking = true

State No Change (No desired wme)

learn-desired-elaboration-rule

Operator learn-desired-elaboration-rule

Learning Conditional Goals

31

state op_store: ^current-task <task> ^world <world> ^task-concept-network <tcn>

state-no-change: chunking = true

State No Change (No desired wme)

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Operator learn-desired-elaboration-rule

Learning Conditional Goals

32

<task> = op_store(arg1=<obj1>)
<world> = { <obj1> <obj2> }
<obj1> = { fork, gray, utensil, visible }
<obj2> = { drawer, closed, not-visible }

(<tcn> ^task-rep <task-rep> ^goal <goal>)
(<task-rep> ^name op_store ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <slot1>)
(<goal> ^conditions <conds> ^p1 <p1> ^p2 <p2>)
 (<conds> ^p1 <cond-p1>)
 (<cond-p1> ^predicate utensil ^1 <slot1>)
 (<p1> ^relation in ^1 <slot1> ^2 <slot2>)
 (<p2> ^predicate closed ^2 <slot2>)
 (<slot2> ^predicate drawer)

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Result: (to superstate)

Learning Conditional Goals

33

<task> = op_store(arg1=<obj1>)
<world> = { <obj1> <obj2> }
<obj1> = { fork, gray, utensil, visible }
<obj2> = { drawer, closed, not-visible }

(<tcn> ^task-rep <task-rep> ^goal <goal>)
(<task-rep> ^name op_store ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <slot1>)
(<goal> ^conditions <conds> ^p1 <p1> ^p2 <p2>)
 (<conds> ^p1 <cond-p1>)
 (<cond-p1> ^predicate utensil ^1 <slot1>)
 (<p1> ^relation in ^1 <slot1> ^2 <slot2>)
 (<p2> ^predicate closed ^2 <slot2>)
 (<slot2> ^predicate drawer)

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Result: (to superstate)
(<s> ^desired <des>)
(<des> ^p1 <p1> ^p2 <p2>)
(<p1> ^relation in)
(<p2> ^property closed)

Learning Conditional Goals

34

<task> = op_store(arg1=<obj1>)
<world> = { <obj1> <obj2> }
<obj1> = { fork, gray, utensil, visible }
<obj2> = { drawer, closed, not-visible }

(<tcn> ^task-rep <task-rep> ^goal <goal>)
(<task-rep> ^name op_store ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <slot1>)
(<goal> ^conditions <conds> ^p1 <p1> ^p2 <p2>)
 (<conds> ^p1 <cond-p1>)
 (<cond-p1> ^predicate utensil ^1 <slot1>)
 (<p1> ^relation in ^1 <slot1> ^2 <slot2>)
 (<p2> ^predicate closed ^2 <slot2>)
 (<slot2> ^predicate drawer)

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Result: (to superstate)
(<s> ^desired <des>)
(<des> ^p1 <p1> ^p2 <p2>)
(<p1> ^relation in ^1 <obj1>)
(<p2> ^property closed)

Learning Conditional Goals

35

<task> = op_store(arg1=<obj1>)
<world> = { <obj1> <obj2> }
<obj1> = { fork, gray, utensil, visible }
<obj2> = { drawer, closed, not-visible }

(<tcn> ^task-rep <task-rep> ^goal <goal>)
(<task-rep> ^name op_store ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <slot1>)
(<goal> ^conditions <conds> ^p1 <p1> ^p2 <p2>)
 (<conds> ^p1 <cond-p1>)
 (<cond-p1> ^predicate utensil ^1 <slot1>)
 (<p1> ^relation in ^1 <slot1> ^2 <slot2>)
 (<p2> ^predicate closed ^2 <slot2>)
 (<slot2> ^predicate drawer)

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Result: (to superstate)
(<s> ^desired <des>)
(<des> ^p1 <p1> ^p2 <p2>)
(<p1> ^relation in ^1 <obj1> ^2 <obj2>)
(<p2> ^property closed ^1 <obj2>)

Learning Conditional Goals

36

sp {CHUNK*op_store*elaborate*goal
 (state <s> ^name op_store
 ^current-task <task>
 ^world <world>)
 (<task> ^name op_store
 ^arg1.id <obj_A>)
 (<obj_A> ^predicate utensil)
 (<world> ^objects.object <obj_B>)
 (<obj_B> ^predicate drawer)
-->
 (<s> ^desired <des>)
 (<des> ^p1 <p1> ^p2 <p2>)
 (<p1> ^relation in ^1 <obj_A> ^2 <obj_B>)
 (<p2> ^predicate closed ^1 <obj_B>)
}

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Learning Conditional Goals

37

sp {CHUNK*op_store*elaborate*goal
 (state <s> ^name op_store
 ^current-task <task>
 ^world <world>
 ^task-concept-network <tcn>)
 (<task> ^name op_store
 ^arg1.id <obj_A>)
 (<obj_A> ^predicate utensil)
 (<world> ^objects.object <obj_B>)
 (<obj_B> ^predicate drawer)
 (<tcn> ^task-rep <task-rep> ^goal <goal>)
 (<task-rep> ^name op_store ^arg1 <arg1>)
 (<arg1> ^arg-type object ^id <slot1>)
 (<goal> ^conditions <conds> ^p1 <p1> ^p2 <p2>)
 (<conds> ^p1 <cond-p1>)
 (<cond-p1> ^predicate utensil ^1 <slot1>)
 (<p1> ^relation in ^1 <slot1> ^2 <slot2>)
 (<p2> ^property closed ^2 <slot2>)
 (<slot2> ^predicate drawer)
-->
 (<s> ^desired <des>)
 (<des> ^p1 <p1> ^p2 <p2>)
 (<p1> ^relation in ^1 <obj_A> ^2 <obj_B>)
 (<p2> ^predicate closed ^1 <obj_B>)
}

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Learning Conditional Goals

38

state op_store: ^current-task <task> ^world <world> ^task-concept-network <tcn>

state-no-change: chunking = true

State No Change (No desired wme)

learn-desired-elaboration-rule: ^current-task <task> ^world <world> ^task-concept-network <tcn>

Operator learn-desired-elaboration-rule

smem retrieval in substate

Learning Conditional Goals

39

sp {CHUNK*op_store*elaborate*goal
 (state <s> ^name op_store
 ^current-task <task>
 ^world <world>)
 (<task> ^name op_store
 ^arg1.id <obj_A>)
 (<obj_A> ^predicate utensil)
 (<world> ^objects.object <obj_B>)
 (<obj_B> ^predicate drawer)
-->
 (<s> ^desired <des>)
 (<des> ^p1 <p1> ^p2 <p2>)
 (<p1> ^relation in ^1 <obj_A> ^2 <obj_B>)
 (<p2> ^predicate closed ^1 <obj_B>)
}

40

Nuggets and Coal

Nuggets
■ Able to learn more diverse

tasks
■ Integrated approach allows

interesting task composition
■ Successfully applied to a

number of domains

Coal
■ Task complexity and diversity

dwarfs even these extensions
■ Increased complexity leads to

more unintended side effects
■ Instruction uses precise

wording and requires an expert

Questions?

